
Y2K - Notes #1 September 22, 2016
Reviewing Class Design
You've seen classes defined in the following way:

class MyClass {

// field, constructor, and
// method declarations

}

class declaration class body

Class declarations can include these components, in order:

1. Modifiers such as public, private, etc.

2. Class name (first letter capitalized by convention)

3. Class's parent (superclass), if any, with the keyword extends.
A) Classes can only extend (subclass) one parent.

4. Comma-separated list of interfaces with keyword implements.
A) Classes can implement more than one interface.

5. The class body, surrounded by braces, {}.

Types of variables:

• fields - Member variables in a class

• local variables - Variables in a method or block of code

• parameters - Variables in method declarations

Access	
 Modifiers
Controls what classes have access to a member field

public and private

• public	
 modi&ier—&ield	
 is	
 accessible	
 from	
 all	
 classes.
• private	
 modi&ier—	
 &ield	
 is	
 accessible	
 only	
 within	
 its	
 own	

class.

• "In the spirit of encapsulation," we make fields private (can only be
directly accessed from the class they are in using the "this"
keyword)

• To access fields from other classes (indirectly) - add public methods
that obtain the field values for us (called accessors and mutators,
setters and getters)

This - a Java keyword that allows you to refer to the implicit
parameter inside a class.

Within	
 an	
 instance	
 method	
 or	
 a	
 constructor,	
 this	
 is	
 a	
 reference	

to	
 the	
 current	
 object	
 —	
 the	
 object	
 whose	
 method	
 or	
 constructor	

is	
 being	
 called

Fields	
 and	
 methods	
 can	
 be	
 declared	
 static	
 (this	
 is	
 true	
 in	
 C++,	
 too).	

If	
 a	
 &ield	
 is	
 static,	
 there	
 is	
 only	
 one	
 copy	
 for	
 the	
 entire	
 class,	
 rather	
 than	

one	
 copy	
 for	
 each	
 instance	
 of	
 the	
 class.	
 (In	
 fact,	
 there	
 is	
 a	
 copy	
 of	
 the	

&ield	
 even	
 if	
 there	
 are	
 no	
 instances	
 of	
 the	
 class.)

Example class; a List is an ordered collection of items of any type:

 class List {
// fields
private Object [] items;
// store the items in an array
private int numItems;
// the current # of items in the list

// methods
// constructor function
public List() {

items = new Object[10];
numItems = 0;

} // AddToEnd: add a given item to the end
//of the list public void AddToEnd(Object ob)
{ ... } }

For example, we could add the following field to the List class:
static int numLists = 0;

And the following statement to the List constructor:
numLists++;

Now every time a new List object is created, the numLists variable is
incremented; so it maintains a count of the total number of Lists created
during program execution. Every instance of a List could access this
variable (could both read it and write into it), and they would all be
accessing the same variable, not their own individual copies.

