
Y2K - Notes #1 September 22, 2016
Reviewing Class Design
You've seen classes defined in the following way:

class MyClass {

// field, constructor, and
// method declarations

}

class declaration class body

Class declarations can include these components, in order:

1. Modifiers such as public, private, etc.

2. Class name (first letter capitalized by convention)

3. Class's parent (superclass), if any, with the keyword extends.
A) Classes can only extend (subclass) one parent.

4. Comma-separated list of interfaces with keyword implements.
A) Classes can implement more than one interface.

5. The class body, surrounded by braces, {}.

Types of variables:

• fields - Member variables in a class

• local variables - Variables in a method or block of code

• parameters - Variables in method declarations

Access	 Modifiers
Controls what classes have access to a member field

public and private

• public	 modi&ier—&ield	 is	 accessible	 from	 all	 classes.
• private	 modi&ier—	 &ield	 is	 accessible	 only	 within	 its	 own	

class.

• "In the spirit of encapsulation," we make fields private (can only be
directly accessed from the class they are in using the "this"
keyword)

• To access fields from other classes (indirectly) - add public methods
that obtain the field values for us (called accessors and mutators,
setters and getters)

This - a Java keyword that allows you to refer to the implicit
parameter inside a class.

Within	 an	 instance	 method	 or	 a	 constructor,	 this	 is	 a	 reference	
to	 the	 current	 object	 —	 the	 object	 whose	 method	 or	 constructor	
is	 being	 called

Fields	 and	 methods	 can	 be	 declared	 static	 (this	 is	 true	 in	 C++,	 too).	

If	 a	 &ield	 is	 static,	 there	 is	 only	 one	 copy	 for	 the	 entire	 class,	 rather	 than	
one	 copy	 for	 each	 instance	 of	 the	 class.	 (In	 fact,	 there	 is	 a	 copy	 of	 the	
&ield	 even	 if	 there	 are	 no	 instances	 of	 the	 class.)

Example class; a List is an ordered collection of items of any type:

 class List {
// fields
private Object [] items;
// store the items in an array
private int numItems;
// the current # of items in the list

// methods
// constructor function
public List() {

items = new Object[10];
numItems = 0;

} // AddToEnd: add a given item to the end
//of the list public void AddToEnd(Object ob)
{ ... } }

For example, we could add the following field to the List class:
static int numLists = 0;

And the following statement to the List constructor:
numLists++;

Now every time a new List object is created, the numLists variable is
incremented; so it maintains a count of the total number of Lists created
during program execution. Every instance of a List could access this
variable (could both read it and write into it), and they would all be
accessing the same variable, not their own individual copies.

