
Linked Lists Intro November 01, 2016

NOTES
arrays aren't the best storage method

ex. company storing employees (alphabetizing, people leaving)

~when a new employee joins, moving everyone else in the array
or ArrayList over takes a lot of time, energy, and memory space

~we want to minimize this!

New Storage Structure:

~rather than storing the object references in an array, let us break the
array into a sequence of links

Computing Concepts, Java Essentials (Horstmann)

Linked Lists

link - stores an element and a reference to the next link in the sequence

NEW DATA STRUCTURE:

linked list - when you insert a new element into a linked list, only the
neighboring link references need to be updated when you add or
remove a link

~good for speedy insertion and removal of links

~bad because element access is slow.. to find the 5th element, you have
to traverse first 4 links to get to it

LinkedList
Link

Audrey

Link

Harry

Link

Taylor

Link

Kianna

Link

Barry

null

Linked Lists Intro November 01, 2016

Implementing Linked Lists

--> let's look at the structure of the Linked List Class

class LinkedList

{

private class Link //private inner class of a Linked List

{

public Object data; //these methods in the class don't
public Link next; //return a Link object, so it is

//safe to make this instance
//variable public

}

} //the LinkedList class holds a reference to first object or

//the first link (or null if the list is totally empty)

void addFirst(Object obj)

void addLast(Object obj)

Object getFirst()

Object getLast()

Object removeFirst()

Object removeLast()

LinkedList --> import the java.util package

~you don't have access to
the link's references (so you
don't mess them up!!)

(don't break the links!)

(THIS IS NOT TRIVIAL!)

encapsulation

So how do you access different elements in the linked list?

iterator - pointing between 2 links, like a cursor between 2 letters

Linked Lists Intro November 01, 2016

So how do you access different elements in the linked list?

iterator - pointing between 2 links, like a cursor between 2 letters

List Iterator

Here are the employees from our first list:

Initial List Iterator position

After calling next

After calling next

After inserting H

| A B K T

A | B K T

A B | K T

A B H | K T

LinkedList list = ... ; // we will do this extensively soon

ListIterator iterator = list.listIterator();

//points before the element

iterator.next(); //moves iterator to the next position

//will throw a NoSuchElementException if you move past the
//end of the list

//to combat this, do this (always!)

if(iterator.hasNext())

iterator.next();

//traverse all elements

while(iterator.hasNext())

{

Object obj = iterator.next();

//do something with the object

}

Linked Lists Intro November 01, 2016

doubly linked lists - Linked Lists stores next and previous

previous();

hasPrevious();
methods

*Add an object after the iterator, then move the iterator
iterator.add("Harry");

*Remove an object --> deletes object that was returned after the
next() / previous() call

while(iterator.hasNext())

{

Object obj = iterator.next();

if(obj //fulfills condition)

iterator.remove();

}

//can only use remove ONCE after previous/next

//can't use immediately after add

//IllegalStateException

FileListTest.java //demonstrates LinkedList class

EXAMPLE - page 741

Linked Lists Intro November 01, 2016

NOTES
Building Java Programs (Reges, Steppe) - Ch. 11

Lists (in general)

<interface>

Collection

<interface>

Set

<interface>

List

<interface>

Queue

ArrayList

Vector

Linked List

extends

(inheritance)

implements

(interface)

collection - an object that stores a group of
other objects called elements

lists - ordered collection of elements, often
accessed by integer indexes or by iteration

Linked List - a collection that stores a list of
elements in a small object containers called
nodes, which are linked together

 iterator - an object that allows the efficient
retrieval of the elements of a list in sequential
order

