
Intro to Algorithms and Big-O Notation October 25, 2016

NOTES
TWO MAJOR METHODS OF PROGRAMMING:

Procedural programming - a method of writing software; centered on
the procedures or actions that take place in a program

Object-oriented programming - method of programming centered on
objects, which are created from abstract data types and encapsulate
data and functions together

Early programming languages were procedural

procedure - a module or function (method) that performs a specific
task (ex. get input from user, perform calculations, read/write files,
display output, etc.)

Programming Logic and Design (book) - Gaddis
INTRO TO ALGORITHMS / Big-O Notation http://cs.lmu.edu/~ray/notes/pltypes/

Different languages have different purposes, so it makes sense to talk
about different kinds, or types, of languages. Some types are:

• Machine languages — interpreted directly in hardware
• Assembly languages — thin wrappers over a corresponding

machine language
• High-level languages — anything machine-independent
• System languages — designed for writing low-level tasks, like

memory and process management
• Scripting languages — generally extremely high-level and

powerful
• Domain-specific languages — used in highly special-purpose

areas only
• Visual languages — non-text based
• Esoteric languages — not really intended to be used
• These types are not mutually exclusive: Perl is both high-level and

scripting; C is considered both high-level and system.

https://en.wikipedia.org/wiki/List_of_programming_languages_by_type

Object-oriented programming (OOP) - focuses on creating objects

objects - software entity that contains both data and procedures

fields = data

(variables, arrays, other data structures stored in the object)

procedures = methods

(also known as modules or functions)

Encapsulation - combining of data and code into a single object

Data hiding - refers to the object's ability to hide its data from code
that is outside the object; only the object's methods may access and
make changes to the object's data

~protects data from accidental corruption

~outside code does not need to know the format/internal structure of
an object (the programmer knows, and that is fine)

***After this part in the book, lots of talk
on what is a "class" and how to create
them (private/public, Javadoc info, etc.)***

Unified Modeling Language (UML) - standard way of drawing
diagrams that describe object-oriented systems

name of the class --> CellPhone

fields listed here --> - manufacturer : String

- modelNumber : String

- retailPrice : Real

methods listed here --> +CellPhone(manufact : String,
modelNum : String, retail : Real)

+setManufacture(manufact : String)

+setModelNumber(modNum : String)

+setRetailPrice(retail : Real)

+getManufacture() : String

+getModelNumber() : String

+getRetailPrice() : Real

http://cs.lmu.edu/~ray/notes/pltypes/
https://en.wikipedia.org/wiki/List_of_programming_languages_by_type

Intro to Algorithms and Big-O Notation October 25, 2016

Data Structures & Other Objects Using Java (book) - Main

data structure - a collection of data, organized so that items can be
stored and retrieved by some fixed techniques (ex. arrays)

algorithm - a procedure or sequence of instructions for solving a problem

Data Structures & Algorithm Analysis in Java (book) - Weiss

"Suppose you have a group of N numbers and would like to determine
the kth largest. This is known as the selection problem."

How would you solve this problem?

... if you had file full of 10 million random numbers, you can't solve this
problem with any type of sorting algorithm we have learned in a
reasonable amount of time... you would need to give the computer
several days to solve this problem... how do we deal with this
impracticality? Is there an algorithm to solve this reasonably? quickly?

Sample word puzzle:

1 2 3 4

1 t h i s

2 w a t s

3 o a h g

4 f g d t

How do you find the words in the
puzzle, moving in any direction?

How about with a program?

Now, what if the puzzle was 16 rows, 16 columns, and the word list
used in it essentially the English dictionary?

Would take a LONG TIME for a computer to solve this...

how do we optimize our algorithms?

Intro to Algorithm Analysis
1) How to estimate time required for a program

2) How to reduce the running time of a program from days/years to
a fraction of a second

3) How careless recursion can give you unwanted results

4)Very efficient algorithms

Math we will need...

Exponents

Logarithms

Series

Modular Arithmetic

PROOFS (induction, counterexample, contradiction)

Recursion (base case, making progress/the recursion)

Intro to Algorithms and Big-O Notation October 25, 2016

Building Java Programs (book) - Reges, Stepp

complexity - a measure of the computing resources that are used by a
piece of code, such as time, memory, or disk space

time complexity - how long the program takes to run

(this is what your reading from DD&OS 1.2 was all about, Big-O)

empirical analysis - run the program and measure how long it takes to
run (example, comparing two sorts by running both of them)

~not a reliable measure... different computers with different
processor speeds with different amounts of memory... doesn't work well

algorithm analysis - applying techniques to mathematically
approximate the performance of various computer algorithms

complexity class - a set of algorithms that have a similar
relationship between input data size and resource consumption

~determined by looking at the most frequently executed line of code

example: if the most frequent line executes (2N3 + 4N) times, the
algorithm is in the "order N3" complexity class, or O(N3) for short

We use Big-O notation to compare complexity / rates of growth of
algorithms...

The list shows the order from slowest to fastest growth (lowest to
highest complexity)

Big-Oh notation
relative rates of growth - how quickly a function is increasing
compared to other functions

Function Name Label Description

c Constant-time O(1) algorithms have runtimes that
don't depend on input size; ex:
converting C to F degrees,
numerical functions (Math.abs)

logN Logarithmic O(logN) algorithms typically divide a
(base 2) problem space in half

repeatedly until it is solved;
ex: binary search

log2N Log-squared

N Linear O(N) algorithms have runtimes that
are directly proportional to N;
ex: algorithms that compute the
count, sum, average,
maximum, or range of a lists of
numbers

Function Name Label Description

NlogN Log-linear O(NlogN) algorithms that perform a
combination of logarithmic and
linear operations, such
executing a logarithmic
algorithm over every element
of a dataset of size N

N2 Quadratic O(N2) algorithms have runtimes that
are proportional to the square
of the input size

N3 Cubic O(N3) algorithms have runtimes that
are proportional to the cube of
the input size; ex: code to
multiply to N x N matrices

2N Exponential O(2N) algorithms have runtimes that
are proportional to 2 raised to
the power of the input size; if
the input size increases by 1, it
takes twice as long to execute
(THEY'RE SO SLOW, only use
on small input datasets)

Intro to Algorithms and Big-O Notation October 25, 2016

http://bigocheatsheet.com/

http://introcs.cs.princeton.edu/java/41analysis/

Homework:

BJP Chapter 13 - page 816, #4 - 5 all

(will post online)

Math we will need...

Exponents

Logarithms

Series

Modular Arithmetic

PROOFS (induction, counterexample, contradiction)

Recursion (base case, making progress/the recursion)

http://bigocheatsheet.com/
http://introcs.cs.princeton.edu/java/41analysis/

