\

‘\‘ Introduction to the Java Collection and Map Interfaces (Optional Section)
|

\

‘5 7 INTRODUCTION TO THE JAVA COLLECTION AND

“'\ MAP INTERFACES (OPTIONAL SECTION)
|
;java provides several generic interfaces that are intended for collection classes
that store Java objects. The two most basic of these interfaces are Collection

(and Map.

\]The Collection Interface

"The methods of our own generic Bag are based on the generic Col lection<E>
interface, although we wanted to focus on basics, so we did not implement all of
%the Collection methods shown in Figure 5.6. Still, your experience with col-
|jection classes in Chapters 3 through 5 has prepared you for reading the docu-
| mentation and using any of Java’s classes that do implement the Collection
|interface. Some of the methods in that interface use a question mark as a data
|

i

type, which is a feature that we’11 discuss fully in Chapter 13.

The simplest Java Collection class is called Vector, which is similar to an
| array because you can place an objectata particular index. But unlike an array,
\ aVector automatically grows if you place an objectata location beyond its cur-
| rent capacity. Other classes that implement Collection include Set, List,
" ArrayList, So rtedSet, and HashSet, some of which are discussed in Appendix D.

| The Map Interface and the TreeMap Class

\l A map class 18 similar to a collection class in that a group of elements can be
' stored. However, the elements added to a map ar® called keys, and each key can
)/ have another object attached to it, called its value. The keys are usually small
; objects such as a social security number or 2 name. The values might be small
| bits of information, of they could be huge objects containing lots of information.
‘ The important concept about a map is that after a key/value pair is added to a
- map, the entire pair can be retrieved or removed simply by specifying its key.
. For example, we might build a map in which a student’s ID number is the key
- and the value is an object that contains the student’s entire academic record.
- When we need to retrieve a student’s record, we can do so by specifying just the

student’s ID number.

Maps

Amapisa collection claés in which key/value pairs may be added.
A pair can be retrieved or removed by specifying just its key.

Java has an interface called Map, and there are eight Java classes that implement
. this interface. The particular class that we will look at is the TreeMap class,
which we discuss next.

Vector
Set

List
ArrayList-
SortedSet
HashSet

289

290 Chapter 5/ Generic Programming

.

Part of the AP] Documentation for the CoTlection Interface

From the Collection link in: http://java.sun.com/ste/l.S.O/docs/api/index.html g
java.lang '

Interface Collection<E>

boolean add(E o)

Ensures that thig collection contains the specified element.
addA11(Collection<? extends E> ¢) '

Adds all of the elements in the specified collection to this collection.
clear()

Removes all of the elements from this collection.
contains(E o)

Returns true if this collection contains the specified element.
containsATll (Collection<?> c) :

Returns true if this collection contains all of the elements in the specified
collection. ‘
equals(E o)

Compares the specified object with this collection for equality.
hashCode() -

Returns the hash code value for this collection.
isEmpty()

Returns true if this collection contains no elements,
iterator()

Returns an iterator over the elements in this collection.
) .

boolean
void
boolean

booTean

boolean

int

boolean
Iterator<Es

boolean

Removes a single instance of the specified element from this collection, if
it is present.

removeAll(Collect on<?s ¢)
Removes al] of this collection’s elements that are also contained in the

‘specified collection. v
retainAl1(Co1] ection<?> ¢)

boolean

boolean

| ‘ [jon) 291
| Introduction to the Java Collection and Map Interfaces (Optional Section)

Retains only the elements in this collection that are contained in the
specified collection. 3 '
size() ’

Returns the number of elements in this collection.
“toArray()

‘Returns an array containing all of the elements in this collection.

int

Object[7

The TreeMap Class

: d
ic TreeMap class has two generic ty.pe paranileters. K for t}izslge(yv:hairclh
T e by f the values. However, Java’s java.util.TreeMap ¢ (which
vhor e typeh0 Map interface) has one extra requirerpent: The keys mus o
O elass tiataFm lements the Comparable<K> interface (from pagl;{ee A
gﬁfaalllgxljsz TreeMaﬁ)a to activate k1.compareTo(k2) to compare two key:
i

and k2.

TreeMap from java.util

Java’'s TreeMap<K,V> implements th_e map inte;face alrglazz
efficient way in which the keys are required to come . rf[)errrlf 20
(such as String) that implements the Comparable in .

t important TreeMap operations are speglﬁed in Figure 52.;.1 bt wses a

gl pt the TreeMap operations, we will write a progr: that uses

- luuStfca ; track of the number of times various words appear in a te ! er.
el use Eep ords as the keys, and the value for each Word‘wﬂl be an ;}I:e kge /
bfiorime ‘;:ﬁe word “starship” appears in the text ﬁl'e.42 times, theél, ° Wi}Il
o exampleiz }‘starship”/42 will be stored in the map. With this in ng? , N
Val'?: f:rﬁeoexamples of TreeMap operations using these three variables:
er .

i Integer> frequencyDaFa;
gfc‘e?raglp:vi:? "o // A wg/ord from our text file, to be used as a key
r ’

j d appeared
; umber of times that the wor. .
Hteger count; Z gtheu:lr text file, to be used as a value in the TreeMap.

i Java
i i i to use a TreeMap since the
i s will be strings, which allows us - (oo e Java
IS\It0 t11'0ne thc?lzl;: ydoes implement the Compa rab1 e<S-tr1 n%j 1{1?}1;22;3 i ?the Jhe
va:iablge count is an Integer rather than a simple int. This i

ues in a map must be objects rather than primitive values.

i ' rface
Partial Specification for the TreeMap Class which Implements the Map Inte

Generic Class ﬁ'egMaQ<K, V>

. . ' kage java.util . -
£ puAbllc Cl:SS irii?;gég;tg}zssz Magp irjlterface for a collection of key/value pairs. The keys
{ TreeMap<K,

i that, for any
i i t the Comparable<K> 1nterface; so that,
i Map are required to implemen : ! o

E\(;zft}l;pe ;(llgr?d-r; iﬁe rsturn va(lllue of x. compareTo(y) is an integer value that

o key. it ‘

—negative if x is less than y

— zero if x and y are equal
o — positive if x is greater than y

(confinued)

(FIGURE 5.7 continued)

Partial Specificati
ecification (see the APy documem‘ation for com lete s, ecification

* C
o;Js;E;';lcct;)_:ef:Jaltollce)TreeMap<K,V> (see the AP
Initialize 5 TreeMap with no keys and values

¢ clear |
public void clear()
Remove] keys and valyeg from this TreeMa
Postcondition:)
This TreeMap is now empty.
¢ containsKey
: Buek;'ﬁc.bookan ContainsKey (K key)
Parzl;?;::rzhéther the TreeMap hag a particular key.
key — the key to be searched for

1 documentation for more constructOrS)

ared to i]
D other keys in the TreeMap using the Comparison Operation

The retumn value is
Postcondiﬁon:
This TreeMap is now empty.
T : : i
hrows: C1 assCastExcept1 on or Nulipoj NterException

Indicates that the speci
pecified key cannot be co
mpared to other keys ¢ i
urrently in the TreeMa
p.

he NulTPointerg i
. XCeption meang that th ; .
operation does not Permit null at the specified key is null, and the Comparison

‘ » B e,

* get
PubTic Vv ger(k key) '
Get i
S the value that i currently associated to the specified key.

key — the key whose associ
Ssociated value jg ¢
Brecondition: 7 oe etumed

Returns: ~ eMap using the comparison operation,

The value for the i ‘ \
Specifie thin 113 .
value is nuj]. P d key within this TreeMap; if
Throws: . ,
ows: C1 assCastExcept1 on or Nullpoj nterException

S e S (] € (+] l reey ap-

. . s d,

there is no such value, then the return

¢ put

-

Introduction to the Java Collection and Map Interfaces (Optional Section) 293

(FIGURE 5.7 continued)
¢+ keySet

public Set<K> keySet()
Obtain a Set that contains all the current keys of this TreeMap.

Returns:
The return value is a Java Set from the class java.util.Set. This Set is a container that
contains all of the keys currently in this TreeMap.

Note:
Format for a loop that steps through every key in a TreeMap t (assuming the keys are

strings):
String key;
¥hi1e (K nextKey : t.keySet())

- - . process the next key, which is stored in nextKey. ..

pubTic V put(K key, V value) :
Put a new key and its associated value into this TreeMap.

Parameters: :
key and value — the key and its associated value to put into this TreeMap

Precondition:
The key can be compared to other ke

Postcondition:
The specified key and its associated value have been inserted into this TreeMap. The return

value is the value that was previously associated with the specified key (or null if there was
no such key previously in the TreeMap).

Throws: C1 assCastException or NullPoi nterException
Indicates that the specified key cannot be compared to other keys currently in the TreeMap.

(The NulTPointerException means that the specified key is null, and the comparison
operation does not permit null.)

Note: :
The return value does not need to be

its own.

ys in the TreeMap using the comparison operation.

used. For example, t.put (k »V) can be a statement on

¢ size |
. public int size() ,
Obtain the number of key/value pairs currently in this TreeMap.

Returns: o o :
The number of key/value pairs currently in this TreeMap.

»

294 Chapter 5/ Generic Programming

Here are the common tasks we’ll need to do with our TreeMap:

1. Putting a Key/Value Pair into a TreeMap. A key and its associated valye
are put into a TreeMap with the put method. For our example, we wil] read
an English word into the variable word and compute the count of how
many times the word occurs. Then we can put the word and its count into the
frequencyData TreeMap with the statement:

frequencyData.put(word, count);

This adds a new key (word) with its value (count) to the frequencyData. If the
word was already present in the TreeMap, then its old value is replaced by the

new count.

2. Checking Whether a Specified Key Is Already in a TreeMap. The boolea
method containsKey is used for this task. For example, the expression
frequencyData. containsKey(word) will be true if the map already has a key
that is equal to word.

3. Retrieving the Value That Is Associated with a Specified Key. The get
method retrieves a value for a specified key. For example, the return value of
frequencyData.get(word) is the Integer value associated with the key word,
For our program, this return value is a Java Integer object.

4. Stepping Through All the Keys of a TreeMap. For any TreeMap, we cap
use the enhanced form of the for-loop to step through all the different keys cur-
rently in the map. The pattern for doing this uses the keySet method, as shown
here for our word counting program:

for(String word : .wordMap. keySet ()
{ ;

- . . do processing for this key, which is in the variable word...

This programming pattern works because the return value of keySet is a collec-
tion class that implements the Ite rable interface.

The Word Counting Program

Using a TreeMap and the four operations we have Jjust described, we can write a
small program that counts the number of occurrences of every word in a text
file. The program we write will just read the words (which are expected to be
separated by spaces) and then print a'table of this sort:

-

2 aardvark .

10 dog
1 not
1 shower

In this example, the file contained four different words (“aardvark,” “dog,”
“pot,” and “shower”). The word “aardvark” appeared twice, “dog” appeared 10
times, and the other two words appeared once each.

One of the key tasks in our program is to open the input file (which will be
called words . txt) and read all the words in the file, compute the correct counts
as we go, and store these counts in a TreeMap called frequencyData. The
pseudocode for this task follows these steps: :

A. Open the words.txt file for reading. We will use a Scanner object to do
this (see Appendix B).

B. while there is still input in the file

{ A
word = the next word (read from the file)

Get the current count (from frequencyData) of how many tiMes .the‘
word has appeared in the file. :

Add one to that current count and store the result back in the
count variable.

frequencyData.put(word, count);

}

The implementation of this pseudocode is given in the readWordF; Te method
of Figure 5.8, along with the implementations of three other methods for the
application. The getCount method is needed to get the current count (from
frequencyData) of a word. In addition to getting the count, it converts from an
Integer to an ordinary int. The printAT1Counts method is particularly inter-
sting because it uses an enhanced for-loop as discussed in Section 5.7.

Self-Test Exercises for Section 5.7

34. Write a Java statement that will put a key k into a TreeMap' t with an

associated value v. What will this statement do if t already has the key
k? ‘

35. Write an expression that will be true if a TreeMap t has a specific key k.

Introduction to the Java Collection and Map Interfaces (Optional Section) 295

296 Chapter 5/ Generic Programming

36. Suppose that a TreeMap t has a key k and that the value associated with
k is an array of double numbers. Write a Java statement that will Tetrieve
the value associated with k and assign it to an array variable called v,

: 37. Suppose t is a TreeMap with keys that are strings. Write a few Java state,
| ments that will print a list of all the keys in t, one per line.

implementation of the WordCounter Program to lllustrate the Use of a TreeMap‘ o

Java Application Program

// File: WordCounter.java
// Program from Section 5.7 to illustrate the use of TreeMaps and lterators.
// The program opens and reads a file called words.txt. "
// Each line in this file should consist of one or more English words separated by spaces.
// The end of each line must not have any extra spaces dfter the last word.

T // The program reads the file and then a table is printed of

// all words and their counts.

import java.util.*; // Provides TreeMap, Iterator and Scanner
import java.io.*; // Provides FileReader and FileNotFoundException

public class WordCounter ‘

{ ,
private staric voi
{ _
TreeMap<String, Integer> frequencyData =
new TreeMap<String, Integer>();
T readWordFile(frequencyData);
| printAl1Counts(frequencyData);
}

if (frequencyData.containsKey(word))
| { // The word has occurred before, so get its count from the map
return frequencyData.get(word); // Auto-unboxed

} .
else : -
{ // No occurrences of this word

" return 0;
}

(continued)

-

Introduction to the Java Collection and Map Interfaces (Optional Section) 297

(FIGURE 5.8 continued)

System.out.printin("—=—-—oee L ___ e "y

System.out.printIn("

for&Str‘i ng word :

Occurrences Word");

frequencyData.keySet())

{
) System.out.printf("%15d %s\n", frequencyData.get (word), word);v
System.out.printTn("——=—-em o ____ F——f ————— S ")

Scanner wordFile;
String word;
Integer count;

// A word read from the filé
// The number of occurrences of the word

try

{
}

// Tr)_/ to open the words.txt file: ‘
wordFile = new Scanner(new FileReader("words.txt"));

catch (FileNotFoundException e)

{

}

// If the file failed, then print an error message and return without counting words:
System.err.printin(e); ‘
return;

while (wordFile.hasNext())

{

// Read the next word and get rid of the end-of-line marker if needed:

~word = wordFile.next();

// Get the current count of this word, add one, and then store the new count:
count = getCount(word, frequencyData) + 1; // Autobox
frequencyData.put(word, count);

298 Chapter 5/ Generic Programming

CHAPTER SUMMARY

* A Java variable can be one of the eight primitive data types. Anythj
that’s not one of the eight primitive types is a reference to a Java b jec!

* An assignment x =y is a widening conversion if the data type of x
capable of referring to a wider variety of things than the type of y. It :-isJ
narrowing conversion if the data type of x is capable of referring to
smaller variety of things than the type of y. Java always permits widenig
conversions, but narrowing conversions require a typecast. ‘

* A wrapper class is a class in which each object holds a primitive val,f
Java provides wrapper classes for each of the eight primitive types.]
many situations, Java will carry out automatic conversions from a prim;
tive value to a wrapper object (autoboxing) or the other way (aute
unbexing).

* A generic method is similar to an ordinary method with one importn;
difference: The definition of a generic method can depend on an underl
ing data type. The underlying data type is given a name, such as T,but T
not pinned down to a specific type anywhere in the method’s implementalg
tion. , f

* When a class depends on an underlying data type, the class can be impled
mented as a generic class. Converting a collection class to a generic clasg

, that holds objects is usually a small task. For example, we converted tha
. IntArrayBag to an ArrayBag by following the steps on page 258.

* An interface provides a list of methods for a class to implement. By writ
ing a class that implements one of the standard Java interfaces, you make

it easier for other programmers to use your class. There may also be exist-§

ing programs already written that work with some of the standard inter-§
faces.

* Java’s Iterator<E> generic interface provides an easy way to step§
through all the elements of a collection class. A class that implements§
Java’s Tterator interface must provide two methods: :

public boolean hasNext() '
pubTlic E next() ’ :
An Iterator must also have a remove method, although if removal is not §
supported, then the remove method can simply throw an exception. |

* Two classes in this chapter have wide applicability, and you’l] find them }
useful in the future(1) the Node class from Appendix E, which is a node
from a linked list of objects; and (2) the LinkedBag class from Appendix
F, which includes a method to generate an Iterator for its elements.

* Java provides several different standard collection classes that implement |

the CoTlection interface (such as Vector) and the Map interface (such as |
TreeMap).

. The elements in the new bag are Java objects
- rather than integers. Also, the new bag has an
iterator method to retumn a Lister.

). The bag from this section stores its elements
on a linked list rather than in an array. Also,
the new bag has an iterator method to

i returnalister.

/1. This uses three import statements:

import java.util.Scanner;

| dimport

) edu.co1orado.co11ections.LinkedBag;
| import edu.colorado.nodes.Lister;

. The code is:

I Scanner stdin = -

1 new Scanner(System.in);

| LinkedBag<String> b =

I new LinkedBag<String>();

,- }f Lister<String> 1ist;

String s;
int i;
for (i = 1; i <= 10; i+

{

System.out.print("Next: ");

: s = stdin.next();
b.add(s);

}

[I Implement a generic class fora sequence of

' Java objects. You can store the objects in an
" array (as in Section 3.3) orin a linked list (as

| in Section 4.5). The class should also implement the
| Tterable interface.

‘ 2 - Write a program that uses a bag of strings to
| keep track of a list of chores you have to

accomplish today. The user of the pro-
gram can request several services: (1) Add an item

| tothe list of chores; (2) Ask how many chores are in

the list; (3) Print the list of chores to the screen; (4)

Programming Projects 301

Tist = b.iterator();
while (Tist.hasNext())
{
s = list.next();
System.out.print1n(s);
1}

32. An internal iterator is quick to implement and
use, but an external iterator provides more
flexibility, such as the ability to have two or
more iterators active at once.

33. Any collection that implements the Tterab] e
interface. 2

34. t.putk,v); Ifkis already a key in t, then
the put method will replace the old value with
the new value v, and the return value of put
will be the old value.

35. t.containsKey(k) §
36. v = (double [1) t.get(k);

37. Iterator it = t.keySet() .iterator;
while (it.hasNext())
{ . 3
System.out.printIn(it.next());
} .

Delete an item from the list; (5) Exit the program.

If you know how to read and write strings from a
file, then have the program obtain its initial list of
chores from a file. When the program ends, 1t should
write all unfinished chores back to this file.

¢ For this project, you will use the bag class
from Appendix F, including the grab
" method that returns a randomly selected
element. Use this ADT in a program that does the
following:

